The double standard about cryonics

One of the most predictable features of public debates about cryonics is that those arguing in favor of cryonics are held to more rigorous standards than those seeking conventional medical treatment. Advocates of cryonics do not just have to prove that cryonics will work, they are also supposed to solve problems like overpopulation and the presumed boredom arising from expended lifespans. To some, people who make cryonics arrangements have an inflated perception of their own importance and should just forgo such selfish attempts to extend their lives. The default position seems to be that people should not exist and that life needs justification. Could you imagine such antinatalist rhetoric being employed when a person seeks conventional medical treatment to extend their life? We can’t, and such responses are quite indicative of the fact that people are not interested in serious evaluation of the cryonics argument.

The most striking case of cryonics being held to higher standards than conventional medicine concerns the requirement that “cryonics” needs to “work.” Even people who have made cryonics arrangements routinely say something like, “I estimate the probability of cryonics working as 5% but life insurance premiums are low and I have nothing to lose if it does not work.” To see how strange such a statement is, let’s look at these two terms, “cryonics” and “working.”

Cryonics is an experimental medical procedure to stabilize critically ill patients at low temperature to benefit from future advances in medicine. Such a definition can include a wide variety of cases, ranging from ice-free cryopreservation (vitrification) as an elective medical procedure in a hospital to the freezing of a person who is found days after circulatory arrest. Considering the enormous variability under which people can be cryopreserved, to claim that “cryonics” will not work without specifying under what conditions a cryopreservation is performed is akin to saying that “emergency medicine” or “chemotherapy” does not work — an absurd claim.

Usually when people argue that cryonics does not work they refer to the mistaken view that cryopreservation that is not initiated within hours, or even within minutes, after death does not make sense because the brain has “died” at that point. Such a view completely ignores the fundamental cryonics argument that lack of function of the brain does not imply that the neuroanatomical basis of identity is irreversibly destroyed.

But let us accept this position the sake of the argument. What such a critic is basically saying is that cryonics cannot work because cryonics patients are cryopreserved under conditions that do not allow it to work. To see how strange such a position is, imagine a country where law would prohibit CPR until 15 minutes of death. Would anyone be impressed if someone would argue that CPR does not work because patients suffer irreversible brain damage after 15 minutes of circulatory arrest? Of course not. We would instead insist that such obstacles should be removed so that these life-saving technologies can be employed as soon as needed. Clearly, whatever the merits of cryonics are, it is not reasonable to conflate the conditions under which cryonics is often conducted with the idea of cryonics as such.

Now let’s look at the second term. What does it mean for cryonics to “work?” Naturally, we would like a medical procedure to cure the disease and restore the patient to the condition than he was in prior to the disease. In real life this often happens, especially in the case of minor infections and minor insults. But there are also many cases where (heroic) medical interventions are aimed at keeping the patient alive without expecting a full recovery without side effects. This is often the case in acute cardio-respiratory arrest and stroke. Would we prefer a complete recovery for such patients? Of course. But would we say that interventions that aim to save a patient’s life did not work if we fail to meet such an ideal – say, a permanent loss of movement in one arm or reduced memory function? No, our first concern would be with the patient’s survival and his perception of the quality of his “new” life.

In the case of cryonics things are not much different. We hope that advanced cell repair technologies will be successful in completely restoring the patient to good health in a rejuvenated state. For some patients complete inference of the original structure of the brain might not be possible, but advanced neural archeology and neurogenomics may restore a significant degree of the original person. We do not heap scorn on such scenarios in today’s medicine and there is no reason to hold cryonics to higher standards, especially if one also advocates the very restrictions that are responsible for such less than perfect outcomes. In fact, there is no reason to be scathing about any credible attempts to save or prolong a life, even if the attempt will not necessarily succeed. Such a perspective is a given in conventional medicine or rescue operations.

One objection to this position is to argue that cryonics cannot work even under the most favorable conditions. Such an argument would basically entail that if a critically ill patient is stabilized without ischemic delays, without ice formation, and without fracturing, it should be categorically ruled out that technologies will ever be developed to repair the original disease of the patient and any form of injury that occurs during the cryopreservation process itself. I personally would consider such a position extremely dogmatic (would anyone argue such a position of long-term technological stasis if the cryonics context were dropped?) but it raises a fundamental question about the burden of proof. Should it rest with the person who aims to prolong life or should it rest with the person who aims to prohibit such attempts? Asking the question is answering it.

Placing “In Case of Emergency” numbers in your cell phone

At the hospital where Linda works, nurses and other employees swap many ‘helpful hints’ via email, and one of these ideas recently circulated seemed to be a technique cryonicists could use to increase the chances that their suspension organizations would find out quickly about their situations, in case of an emergency.

The way it works is that a paramedic or emergency responder may look for a cell phone, and if it’s turned on and unlocked, they would check the address book to see if there’s any listing for ICE (all capitals). This stands for In Case (of) Emergency.

The practice (again, this is just ‘catching on’ and may not be done in all areas) is that the responder dials the ICE number and lets whoever answers know that the owner of the cell phone is in danger. They don’t know in advance if it’s the personal physician, the next of kin, or (in our case) a cryonics society. They just dial it [the “In Case (of) Emergency” phone number] and get the word passed.

If there’s more than just one emergency number, then the listings could be ICE1, ICE2, ICE3, etc. In our case, of course, the Cryonics Institute is “ICE1”, and each of us lists the other as “ICE2”. A different setup may be best for others. This is just how we’ve put it to work.

Will this help get the word to those who need to know quicker, in an emergency? Who knows? You can ask the same question about what good a Medic Alert bracelet might do. The bottom line is that if you carry a cell phone and usually have it unlocked and turned on, it’s just one more “inexpensive” line of defense against being in a dire situation without our cryonic organizations being aware of this situation and track our whereabouts as treatment is carried out.

For any who might like to see the exact wording of the message being circulated in Linda’s hospital via email, it’s reproduced below. Note that this is not ‘official’ hospital email, but rather part of an informal ‘idea mill’. Still, there are a few thoughts we haven’t mentioned above, so it’s included:

“We all carry our mobile phones with names & numbers stored in its memory but nobody, other than ourselves, knows which of these numbers belong to our closest family or friends.

“If we were to be involved in an accident or were taken ill, the people attending us would have our mobile phone but wouldn’t know who to call. Yes, there are hundreds of numbers stored but which one is the contact person in case of an emergency? Hence this ‘ICE’ (In Case of Emergency) Campaign

“The concept of ‘ICE’ is catching on quickly. It is a method of contact during emergency situations. As cell(mobile) phones are carried by the majority of the population, all you need to do is store the number of a contact person or persons who should be contacted during emergency under the name ‘ICE’ ( In Case Of Emergency).

“The idea was thought up by a paramedic who found that when he went to the scenes of accidents, there were always mobile phones with patients, but they didn’t know which number to call. He therefore thought that it would be a good idea if there was a nationally recognized name for this purpose. In an emergency situation, Emergency Service personnel and hospital Staff would be able to quickly contact the right person by simply dialing the number you have stored as ‘ICE.’

“For more than one contact name simply enter ICE1, ICE2 and ICE3 etc. A great idea that will make a difference!

“Let’s spread the concept of ICE by storing an ICE number in our Mobile phones today!

“Please forward this. It won’t take too many ‘forwards’ before everybody will know about this . It really could save your life or the life of a loved one. Make sure all children have this on their cell phones . ICE will speak for you when you are not able to.

So, that’s the message being circulated via email at Linda’s hospital. One possibility might be to circulate this article among cryonicists with the suggestion that they send a copy to their local medical organizations, inquiring if this practice has been adopted in their areas and recommending that if this not the case, it might be a good idea. This would accomplish two things:

1.   It would increase the rapidity of the spread of this practice, in general and…

2. It would make the medical community, in general, even more aware of the fact that an increasing number of persons have arrangements for cryonic suspension; and that prompt notification of their organizations, even in cases that are not immediately life-threatening, is helpful as part of the tracking of health status that these organizations maintain.

Cryonics sets example for emergency medicine

One of the most neglected aspects of cryonics is that its procedures, and the research to support them, can have important practical applications in mainstream fields such as organ preservation and emergency medicine. Contrary to popular opinion, cryonics does not just involve an optimistic extrapolation of existing science but can set the standard for these disciplines. As a matter of fact, that is exactly what cryonics, and cryonics associated research, has been doing over the last 25 years.

The most striking example is the progress in vitrification as an alternative for conventional cryopreservation. Although the idea of eliminating ice formation at low subzero temperatures has been discussed since the beginning of cryobiology, vitrification as a serious research agenda was largely driven by the demand for ice-free preservation of the human brain. Over the last decades this research has culminated in the development of the least toxic vitrification agent to date, 21st Century Medicine’s M22.

The contributions of cryonics to mainstream science and medical practice are not confined to cryobiology. Researchers Jerry Leaf and Mike Darwin made impressive progress in the formulation of bloodless whole body organ preservation solutions to resuscitate dogs from ultraprofound hypothermic temperatures, an intervention that is increasingly being recognized as essential to stabilize trauma victims. In the mid 1990s, Mike Darwin and Steve Harris conceived and developed the idea of using liquid breathing with perfluorocarbons as a method to induce rapid hypothermia. They further validated a multi-modal medications protocol to resuscitate dogs from up to 17 minutes of normothermic cardiac arrest without neurological damage.

Although progress has slowed considerably in the non-cryobiology research areas over the last 10 years, it is encouraging to observe that some of the procedures that are routine in cryonics  stabilization protocol  are starting to catch on in mainstream emergency medicine practice as well. For example, contemporary cryonics stabilization protocol has been strongly shaped by the idea that the best strategy to limit brain injury after cardiac arrest is to combine a number of different interventions: cardiopulmonary support, induction of hypothermia, and administration of circulation-supporting and neuroprotective medications.

It is therefore very encouraging to learn that the Wake County EMS group in North Carolina has achieved impressive results in treating out-of-hospital cardiac arrest victims using a protocol that closely follows elements of current cryonics stabilization protocol. Systematic implementation of immediate induction of hypothermia, continuous compression CPR, and the use of an impedance threshold device (ResQPOD) produced an almost 400% improvement in survival and vast improvements in neurological outcome. A PowerPoint presentation about their experience and protocols are available at their website.

Such real world outcomes do not only inspire confidence in the procedures cryonics organizations can use to protect patients from brain damage after cardiac arrest, it should also serve as a wake-up call to relaunch an aggressive research agenda to push the limits of hypothermic and normothermic resuscitation. In absence of this, it will only be a matter of time before cryonics activists can no longer claim that “we did it first.”

HT Mike Darwin

Cryonics as an elective medical procedure

The two most popular technical arguments against human cryopreservation are that cryonics causes irreversible freezing damage and that the delay between pronouncement of legal death and the start of cryonics procedures causes irreversible injury to the brain. Such arguments can be countered by pointing out that freezing damage and prolonged periods of warm ischemia do not necessarily produce information-theoretic death. The argument that cryonics procedures themselves produce additional forms of injury which cannot be treated with contemporary technologies misses the point that cryonics involves stabilization of critically ill patients so that they can be treated with future technologies. In the case of freezing damage, this argument has also lost most of its value because today’s cryonics organizations employ vitrification agents to stabilize a patient at cryogenic temperatures without ice formation.

The criticism that delays between pronouncement of legal death and start of cryonics procedures will cause irreversible injury to the brain is also unfair because it treats the current social and legal obstacles to perform better stabilization of cryonics patients as an intrinsic element of cryonics itself. But cryonics does not necessarily involve cryopreservation of persons who have been pronounced legally dead. The current Wikipedia entry on cryonics defines cryonics as follows:

Cryonics is the low-temperature preservation of humans and other animals that can no longer be sustained by contemporary medicine until resuscitation may be possible in the future.

As can be deduced from this definition, cryonics constitutes a form of medical time travel that uses cryogenic temperatures to allow a terminally ill patient to reach a time when more advanced treatments may be available. As such, it would be premature to declare a cryonics patient “dead.” In most cases, pronouncing a person dead only reflects our current inability to treat the patient and our psychological need for definitive answers to questions of life and death. The limitation that cryonics procedures can only be started after pronouncement of legal death reflects the unfortunate fact that the current medical establishment does not recognize cryonics as a credible form of advanced critical care.

As a result, cryonics is currently practiced as a form of emergency medicine in which conventional resuscitation technologies such as chest compressions and ventilations are used to avoid the kinds of injury that follow after cardiac arrest. Although there will always be a place for cryonics as a form of emergency medicine to treat cases of trauma and  sudden circulatory arrest, most patients who currently present for human cryopreservation would benefit from more hospital cooperation in choosing cryonics as an elective medical procedure.

Although current cryonics organizations such as Alcor try to make the best of a bad situation by employing standby teams that allow rapid intervention after cardiac arrest to reduce brain injury, much improved quality of care of cryonics patients would be possible if cryonics procedures would start at a point where medical professionals (with informed consent of the patient and/or family) would determine that further treatment of the patient with contemporary technologies would be futile, or even counter-productive.

When this determination is made, conventional life support for the patient would be terminated and deep hypothermia would be induced using cardiopulmonary bypass. At deep hypothermic temperatures, the patient’s blood would be substituted with an organ preservation solution to reduce blood complications associated with lower temperatures. When the patient’s core temperature approaches the freezing point of water, the organ preservation solution would be replaced by a vitrification agent to allow an ice-free descent to cryogenic temperatures for long term care. After lowering the patient’s temperature below the glass transition point (Tg), the patient is maintained at intermediate temperatures to reduce the risk of thermal stress and fracturing that would occur at lower cryogenic temperatures.

If such hospital based human cryopreservation will be available, most of the injury that is currently incurred by cryonics patients can be eliminated. No longer do cryonics patients have to suffer harmful periods of shock, cerebral ischemia, and circulatory arrest before intervention is possible. Cryonics as emergency medicine will be confined to cases that constitute unexpected life-threatening events.

As this brief, but simplified, description of hospital based (or assisted) cryonics makes clear, ischemic brain injury is something that can be eliminated from cryonics procedures if the current restriction to limit cryonics procedures to clinically dead people were lifted. Such a change will not only improve the quality of cryonics procedures, it will also make cryonics available to cardiac arrest and stroke victims who can be resuscitated with contemporary technologies but will suffer delayed brain injury (often leading to higher-brain death) if they are allowed to resume life at normothermic temperatures.

Contemporary cryonics procedures do not need to cause “irreversible” brain injury or  massive freezing damage. There is good reason to believe that in ideal cases existing cryonics procedures can be successfully reversed up to the point of cryoprotective perfusion. The major limiting factor in cryonics is not “brain death” or freezing  but cryoprotectant toxicity. But even in this area cryonics associated research  companies are setting the standard for conventional cryobiology, as demonstrated by Alcor’s implementation of the vitrification agent M22 to cryopreserve its patients.