Medico-Legal Aspects of Human Cryopreservation Optimization

Introduction

Ongoing legal challenges and hostile interference of relatives have increased awareness among cryonicists that addressing the likelihood that one will be cryopreserved at all should take center stage among other strategies for survival. As a consequence, a number of individuals have recently taken on the task of working out the conceptual and legal challenges to minimize hostile interference (for a contribution on the ethical aspects of cryonics interference, look here).

One aspect of cryonics optimization planning that has received little attention to date is to develop legal strategies to deal with medical and legal issues surrounding one’s death, terminal illness, and the dying phase. In this memo I will outline some of the most important medical and medico-legal issues, how cryonicists could benefit from recognizing them, and suggest some legal and practical solutions. Before I get to the substance of these issues I would like to briefly identify all the stages in which proactive cryonics planning can improve our odds of personal survival.

Opportunities for cryonics optimization

The first and most obvious decision is to make cryonics arrangements. Alcor members face complicated decision making because the organization offers both whole body cryopreservation and neuro cryopreservation. From the perspective of cryonics optimization many members choose neuropreservation because it enables the organization to exclusively focus on what matters most; the brain. There is also a logistical advantage. In case transport of the whole body across state lines is delayed the isolated head can be released in advance as a tissue sample. Additionally, a number of Alcor members have recognized that it is possible to have the best of both worlds and combine neuro-vitrification and separate cryopreservation of the trunk. This allows the member to take advantage of the superior preservation of the brain that is available for neuro patients without having to forego whole body cryopreservation. This option is not widely advertised so one is encouraged to contact Alcor about revisions in funding and paperwork.

The other obvious decision is to have secure funding in place. Many members have given extensive thought about funding mechanism and wealth preservation so there is little need to discuss this here. From the perspective of cryonics optimization it is important to emphasize the importance of over-funding your cryopreservation. This not only protects you against future price increases, but also enables you to take advantage of technical upgrades that cannot be offered at the current preservation minimums. Another aspect to consider is leaving money to cryonics research. Although it is reasonable to expect that general progress in science will include general cell repair, there may be areas that will only be pursued by those who have a scientific or personal interest in resuscitation of cryonics patients. As in many areas in life, diversification is key. One should not solely depend upon Alcor or CI for successful resuscitation research or efforts.

Another important opportunity for cryonics optimization is to recognize the importance of proximity. From a technical point of view, there is simply no comparison to de-animating near the cryonics facility of your choice. This is not just a matter of reducing ischemic time. Remote standby and stabilization is a fertile ground for all kinds of logistical and legal complications. Most cryonics members do recognize the importance of reducing transport times but it is an established fact that as soon people become terminally ill they become more resistant to the idea of relocating and often prefer to die among friends at home. It is important to anticipate this scenario and to not delay relocation plans until the last minute. Another advantage of relocating at an earlier stage is that one is better protected in case of a terminal disease with rapid decline or sudden death.

As mentioned above, one issue that is getting increasing attention is how to protect oneself against hostile relatives and third parties. The take-home message is to alter cryopreservation contracts and your paperwork in such a matter that there is an incentive *not* to interfere.

Last but not least, something should be said about community building. Cryonicists can greatly benefit from becoming active in their local cryonics group. Often these meetings are open to members of all cryonics organizations. Most cryonics groups organize standby and stabilization trainings where members can familiarize themselves with the basics of the initial cryonics procedures. Such groups may not only play a part in your own future cryopreservation but are also useful to get a basic understanding about what you can do in the case a local member or a loved one needs to be cryopreserved. Another important aspect of participation in a local cryonics group is that one remains in contact with other cryonicists. When people get older their friends and family members die and the member has little communication with those who are aware of his desire to be cryopreserved. If you live in an area where there are no local cryonics groups contact your cryonics organization and/or start your own local group.

Physician-assisted dying

If there was more widespread acceptance of cryonics the harmful delay between pronouncement of legal death and the start of cryonics procedures would not exist. After a determination of terminal illness, preparations would be made to ensure a smooth transition between the terminal phase and long term care at cryogenic temperatures.

Some states have enacted legislation that allows a terminally ill patient to request the means to terminate their life.  Assisted suicide is currently legal in the following three states: Oregon, Washington, and Montana. Physician-assisted dying does not remove the current obstacle that cryonics procedures can only be started after legal pronouncement of death but it can bring the timing of death (and thus of standby) under the patient’s control. Utilizing such laws can also greatly reduce the agonal phase of dying and its associated risk of damage to the brain.

The legal requirements for utilizing physician-assisted suicide can vary among states but, as a general rule, require that a patient has been diagnosed with a terminal illness with no more than six months to live, that the patient is of sound mind, and that the request is made in written form and witnessed. The State of Oregon has a residency requirement to discourage physician-assisted dying tourism.

Since cryonics procedures are performed after legal death, there is no reason why cryonics patients are exempt from utilizing these laws. Despite rumors to the contrary, there is no evidence that utilization of these laws require mandatory autopsy. After all, the cause of death in physician-assisted dying is clear; self- administration of the lethal drug. To avoid any possible accusations that cryonics organizations encourage the use of such laws, it is recommended that no person associated with the cryonics organization should be a witness, let alone be the physician that prescribes the lethal drugs.

Sudden death and autopsy

One of the worst things that can happen to a cryonics member is sudden death. Especially when the patient is young with no prior heart conditions, an autopsy is almost guaranteed. There is little one can do to avoid sudden death aside from choosing a lifestyle that reduces cardiovascular pathologies. The only preparation for dealing with sudden death is to become a religious objector to autopsy. Some states (including California, Maryland, New Jersey, New York and Ohio) have executed laws to restrict the power of the state to demand an autopsy. Although exceptions can still be made in cases of homicide or public health there is little to lose in using such provisions. The websites of Alcor and CI have links to the relevant forms to execute. The Venturists are offering a card for their members stating that they object to autopsy. This card can be requested from Michael Perry () at Alcor. An example of such a card is provided below.

Sudden cardiac death is not the only reason for ordering an autopsy. An autopsy is typically ordered if there are criminal suspicions (homicide) or suicide. There is also a greater risk of autopsy when a patient dies in absence of other people. Since many old cryonicists are single and spent a lot of time alone they are also at an increased risk for autopsy. This is another good argument to remain involved with local cryonics groups and in frequent contact with other cryonicists.

If autopsy cannot be avoided it is important that the cryonics organization is notified promptly. Cryonics organizations can make another attempt to persuade the authorities to abstain from an autopsy or to request a non-invasive autopsy that exempts and protects the brain. The cryonics organization can also issue instructions for how the patient should be maintained prior, during and after autopsy. It might be worthwhile to generate a template of general autopsy instructions for cryonics patients. Such a document may not be binding but it could be useful in limiting the amount of ischemia and injury.

The dying phase and Advance Directives

Most cryonics members have a basic understanding of the importance of time and temperature to protect a cryonics patient after legal pronouncement of death. Fewer people recognize the effect of the dying process itself on the outcome of a cryonics case. In best case scenarios (physician-assisted dying, withdrawal of ventilation) the dying phase is relatively rapid while in worst case scenarios extensive ischemic injury to the brain is possible. Little work has been done to outline recommendations for the terminally ill cryonics patient. One of the main objectives of this article is to recognize that cryonics members could benefit from a general template that can be used in their Advance Directives and to guide surrogate decision makers.

At this point it is useful to briefly describe how the dying phase itself can affect the outcome of cryonics procedures (for a more detailed treatment see the appendix at the end of this article). A useful distinction is that between terminal illness and the agonal period. A patient is classified as terminal when medical professionals establish that the patient cannot be treated with contemporary medical technologies. During this period the patient is usually still of sound mind and able to breathe and take fluids on his/her own. Unless the patient has suffered an insult to the brain or a brain tumor, there is no risk for ischemic injury to the brain yet. At some point, however, the body’s defense mechanisms will be overwhelmed by the patient’s disease and the patient enters the agonal phase. The agonal phase, or active dying phase, can be characterized as a form of general exhaustion. The body is still fighting but with decreasing success and efficiency. One of the biggest concerns for cryonics patients is the development of (focal) brain ischemia while the (core) body is still mounting its defense.

It would be impossible to design an Advance Directives template that is optimal for all cryonics patients, but there are a number of general guidelines that can inform such a document:

* All health care decisions should be guided by the objective of preserving the identity of the patient throughout the terminal and dying phase.

* Measures to prolong dying should only be initiated or accepted if they result in less ischemic injury to the brain.

* Life-sustaining measures should be withheld in case of traumatic or ischemic insults to the brain.

To ensure that sensible decisions are made in situations that are not covered by these Advance Directives, a Health Care Proxy can be executed that designates a person to make those decisions. It is understandable to give such power to the person closest to you but in the case of cryonics it is recommended that this responsibility should be given to a person with a strong commitment to your desires and a detailed understanding of the medical needs of cryonics patients.

Pre-medication of cryonics patients

If a critically ill cryonics member is at risk of ischemic brain injury during the dying phase it stands to reason that some palliative treatment options are better than others. One possibility for cryonics patients is to specify such options in one’s Advance Directives. Another scenario in which pre-medication is possible is where the medical surrogate is strongly supportive of such measures. It should be noted that such a decision rests solely with the member or his/her medical representative. Cryonics organizations should not be involved in the pre-mortem treatment of the patient.

There are two important questions about pre-medication of cryonics patients:

1. Is it safe?

2. Is it beneficial?

The answer to the first question has a lot to do with the status of the pharmaceutical agents in question. For example, a supplement like melatonin is less controversial than a prescription drug like heparin. The most important thing to keep in mind is that drugs that may be beneficial after legal pronouncement of death could have adverse effects in critically ill patients. Good examples are drugs that have effects on blood rheology and clotting. One would rather forego the hypothetical benefit of a drug if there is a non-trivial change of triggering major controversies about drugs taken during the dying phase. This leaves only certain supplements as relatively safe options for pre-medication of cryonics patients.

The answer to the second question is not clear. The rationale behind pre-medication is that it can protect the brain during agonal shock and its associated ischemic events. Evidence for this belief is usually found in the peer reviewed literature on neuroprotection in ischemia. However, there is a clear difference between the administration of neuroprotective agents during the dying phase and the administration of neuroprotective agents prior to artificially-induced acute ischemia. One perspective is that such agents are beneficial but only delay the ischemic phase of the dying period. In this case supplements have little neuroprotective effect. An alternative perspective is one where such supplements do not alter the agonal course as such but provide more robust protection after circulatory arrest. Obviously, this matter is not of concern to conventional medicine so there is little evidence to make rational decisions. In light of the previous discussion, the current (tentative) verdict should be that a case can be made for pre-administration of neuroprotective agents but that these agents should be confined to “safe” supplements like melatonin, Vitamin E and curcumin. Whether such a regime would be beneficial needs to be decided on a case by case basis and is, therefore, more in the domain of the Health Care Proxy than Advance Directives.

Do Not Resuscitate Orders

Do Not Resuscitate (DNR) orders present one of the most challenging issues for cryonics optimization. On the one hand, we would like to benefit from any attempt to resuscitate us in case of sudden cardiac arrest (or any other acute events that can lead to death). On the other hand, we would not like to be subject to endless rounds of futile resuscitation attempts that can damage the brain.

One would be inclined to think that resuscitation attempts should be made in case of sudden insults or during surgery but that no resuscitation attempts should be made during terminal illness. In reality things are not that simple. For example, resuscitation may be possible after 8 minutes of cardiac arrest but the patient can suffer severe brain damage as a consequence. Such a scenario can be minimized by executing a DNR at the cost of foregoing any resuscitation attempts at all. Would this outweigh the benefits of successful resuscitation attempts? It is hard to see how an objective answer to this question can be given without taking a specific person’s views on risk and treatment into account. One way to mitigate this dilemma is to make a distinction in your Advance Directives between pre-arrest emergencies (for example, resuscitation should be permitted in the case of labored breathing but presence of heart beat) and full arrest. An in-hospital situation where resuscitation of a critically ill patient would be helpful would be where it would allow a cryonics standby team to deploy at the bedside of the patient. As can be seen from these examples, good resuscitation instructions for cryonics patients require a lot of attention to context. Because confusion could arise whether Advance Directives would include pre-hospital emergency procedures it is recommended to execute an explicit document if you want these cases to be covered – such a document could be complemented by wearing a bracelet.

Creating a general template

This article has identified a number of important medico-legal issues that need to be addressed by cryonicists to optimize their cryopreservation. It has become clear that in the case of many topics we would all benefit from uniform and effective language. The next step is to translate the concerns discussed in this document in clear legal language so that templates can be offered to all members of cryonics organizations to draft their own Living Will and Advance Directives. One potential problem of such a general template is that it may not conform to state regulations and needs additional tweaking to make it valid in the state where the person lives.

——————————————————————————————–

Appendix :  Neurological damage during the dying phase

Securing viability of the brain by contemporary criteria is the most important objective of cryonics standby and stabilization. Recognition of how pathological events in the central nervous system can defeat this objective is of great importance. As a general rule, the risk for increased brain damage is higher during slow dying. For example, when the ventilator is removed from the patient who is not able to breathe on his own the time between this action and circulatory arrest can be short. Conversely, when a patient is going through a prolonged terminal and agonal phase (regional) injury to the brain can occur while the body itself is still fighting for its survival.

The human brain has little storage of excess energy. As a result, hypoxia causes the brain to deplete its oxygen reserves within 30 seconds. The energy depletion that follows cerebral hypoxia during the dying phase has a number of distinct effects: 1) excitation or depression of certain processes in the brain, 2) alteration in the maintenance of structural integrity of tissues and cells, and 3) alteration of neuromediator synthesis and release. The depletion of oxygen leads to a switch from aerobic to anaerobic energy production. As a consequence, there is an increase in the metabolic end-products of glycolysis such as lactic acid which decreases pH in the brain. After 5 minutes no useful energy sources remain in the brain, which can explain why the limit for conventional resuscitation without neurological deficits is put at 5 minutes as well. Because the dying phase leads to progressively worse hypotension and hypoxia the metabolic state of the brain after the agonal phase is worse than if there would have been sudden cardiac arrest.

Light microscopic changes have been observed in brain cells after 5 minutes of ischemia. Prolonged hypotension, as can occur in the agonal patient, can lead to the appearance of “ghost cells” and disappearance of nerve cells. Such observations provide evidence that structural changes, including cell death, can occur prior to clinical death. Another manifestation of hypoxia (or hypotension) is the progressive development of cerebral edema. The resulting narrowing of vessels and decrease of intercellular space can, in turn, aggravate energy delivery to tissues. Of particular importance for cryonics stabilization procedures is the development of no-reflow which can prevent complete restoration of perfusion to parts of the brain during cardiopulmonary support. There is no consensus as to whether no-reflow can occur as a result of prolonged hypotension (as opposed to complete cessation of blood flow), but an extended dying phase can set the stage for cerebral perfusion impairment after circulatory arrest.

The central nervous system does not shut down at once. Throughout the terminal and agonal phase alternations in the brain progress from minor changes in awareness and perception to deep coma. As a general rule, more recent and complex functions of the brain disappear earlier than the most basic functions of the brain. The uneven brain response to hypoxia may reflect different energy requirements, biochemical and structural differences, and/or the activation of protective mechanisms to preserve the “core” functions of the brain. The CA1 region of the hippocampus has been demonstrated to be uniquely vulnerable to ischemia. This presents a problem for contemporary cryonics since the objective of human cryopreservation is to preserve identity-relevant information in the brain.

This article is a slightly revised version of a paper that was submitted for the 4th Asset Preservation Meeting near Gloucester, Massachusetts.

Death is Gruesome…Cryonics Only Makes it Less So!

William Faloon is a Licensed Funeral Director and Embalmer (Florida license number: F042784)

Human beings are largely unaware about the gruesome nature of “death”

Humans also shy away from the mutilation that occurs during hospital surgery.

Hollywood films portray cryonics in a glamorous high-tech manner that makes it appear that one’s body can easily be placed into a capsule and frozen for future revival.

Reality is that cryopreservation involves complex surgery whereby tubes are inserted into major arteries and veins in order to deliver special anti-freeze solutions into the brain. The purpose is to reduce or eliminate freezing damage and other types of damage to brain cells. The process involves introducing stabilizing drugs and a special solution in the field and a major procedure in an operating room.

There’s nothing pretty about human cryopreservation, but as you’ll read, the alternatives are truly ghastly—and every alternative involves the head eventually separating from the body.

We deceive ourselves

When I worked as a licensed embalmer, I was quite talented at taking horrific human remains and making them look good temporarily. In order to do this, a tremendous amount of mutilation was done to each corpse.

First step is to wire or sew their mouths shut. Incisions are made in the neck, groin and other areas to access arteries to insert tubes that were used to force formaldehyde in. Veins are accessed (raised) to push blood out.

While formaldehyde delivered through blood vessels preserves tissues of the body, it does little to keep cavities (such as the stomach, bowels, lungs and cranium) from putrefying. To keep the body from decomposing before burial, we used a device that resembles a thick hollow sword to repeatedly penetrate the body cavities to vacuum out as much of the liquid contents as possible. We would then reverse the process by pouring formaldehyde directly into the thoracic and abdominal cavities and sometimes the brain. Sometimes the same sword (trocar) used to evacuate the bowels was shoved up the nose through the sinuses to suck out cerebral-spinal fluid in the cranium.

When I learned how to do this in mortuary school, I thought how undignified the entire process is. Without embalming, however, the outcome is even worse.

Decomposition

It’s frightening how quickly a living, breathing, thinking person can be transformed into a rotting, stinking corpse. A few days at room temperature and the stench can become so bad that it can never be removed from the house, car or clothing.

When picking up a decomposed body, it was not unusual for its arms to literally be ripped off when trying to move the remains into a rubber pouch. Skin slips right off the body after a few days making the removal of a “decomposed subject” a challenge.

A decomposed corpse is often severely bloated with intestinal and “tissue” gas, discolored beyond recognition, and carries the most horrific of odors. The challenge is to dump enough preservative powders and liquids into the rubber-pouch encased corpse and then place the pouched corpse into a sealed casket and hope that no foul aroma leaks out.

Those who don’t like the thought of being “embalmed” sometimes mandate in their will that no embalming is to take place. They are thus condemned to grisly decomposition in the ground or tomb.

Cremation is no escape

The process of preparing corpses to look like living individuals laying in a coffin is less common than in the 1960s, when virtually every corpse was embalmed for a “viewing”.

More people nowadays opt for direct cremation, where the body is refrigerated temporarily and then placed into a furnace. The flames ignite the body fat which can sometimes be seen exiting the corpse in little rivers. In order to incinerate the brain midway through the cremation process, a small door is opened into the furnace where a steel poker is rammed into the skull to “pop out” the brain tissues.

After all the soft tissues have been burned away, the skeletal remains are taken out and ground into smaller pieces which become the “cremains” or ashes.

During the cremation process, needless to say, the head becomes separated from the body as the flames burn through the spinal cord and other connective tissues.

Considering this was a functioning human being only a day or two before, there certainly is no dignity with this process. As with embalming and decomposing, cremation is quite “gruesome”.

Autopsy—the ultimate mutilation

The meticulous dissection of a corpse known as an “autopsy” is the most intentional and egregious form of mutilation that one can imagine.

Your odds of having this horrific process done to you are higher than you may think, as most counties autopsy anyone who dies under suspicious circumstances.

As you read this, just imagine someone taking a scalpel and carving a huge “Y” stretching from the top of both your shoulders and then meeting at the bottom of your breastbone. The incision continues to the bottom half of the “Y” down to your pubic area. A steel saw is then used to cut open your breastbone, your ribs are separated. Every one of your organs are cut out and sliced in many different pieces for “examination”.

The next step is to make an incision using a scalpel across the back of your head. Another saw is then taken to cut open your skull so that your brain can be removed, sliced and “examined”.

My first reaction to an autopsy was that is was so grotesque that it should be banned. From a practical standpoint, however, autopsies allow doctors to learn from their mistakes by seeing what actually was going on while their patient was dying, though this practice has declined dramatically over the past 40 years.

Autopsies nowadays are mostly performed by county Medical Examiners to determine the cause of death when there is no attending physician, or where a death occurs under suspicious circumstances.

Autopsies provide a lot of good data that benefits the living, but at the cost of horrendous mutilation to what was once a human being.

As an embalmer, putting together the pieces of an “autopsied case” took about four times longer than a regular case.

What happens after burial?

As I said earlier, I was darn good at taking corpses that were severely disfigured by degenerative disease and temporarily making them look good for a few days in the funeral home.

My work experience includes disinterring bodies that had been embalmed and buried years in the past. These cases arose when a family member wanted the buried body moved to a new city or cremated.

In rare cases, a corpse that had been in the ground for ten years or more was still “viewable” with a little cosmetic help. When this occurred, I would call the family and say, “if you want to see Dad again, he is in pretty good shape”.

In most cases, however, the remains here horrifically deteriorated. One case I will never forget reminded me of the original Frankenstein movies. The cemetery people opened the grave and I was supposed to meet the removal service company at 4:00 PM during the time of the year when the sun set early. The removal company was late and the cemetery people insisted that I get the body out of the ground before closing.

The top of the concrete burial vault was removed, exposing a deteriorating coffin. I went down into the grave, straddling myself by putting one foot on each side of the burial vault top for leverage. I ripped open the top of the coffin and saw one of the scariest looking corpses ever. The tissue literally had deteriorated in a way that resembled a thin layer of hot wax covering the skull. It truly looked frightening even to me.

My paid help was running late so I had to pull this deteriorated cadaver out of the ground by myself. I grabbed one arm and one leg, hoping to pull it out of the rotting coffin. The arm ripped off and the body fell back in. I tried other angles, but body parts kept separating from the torso. As body parts piled up around the grave, the removal service finally arrived and we lifted the entire body out of the buried coffin. Staring at this disfigured corpse in the eye, with body parts coming off left and right, as darkness was setting in was downright eerie.

Sometimes when doing a disinterment, there is virtually no body. One time we opened a fairly well preserved coffin to see only perfectly clean dentures, eye glasses and musty clothing. The reason for this was that flies had gotten into the corpse’s nostrils before burial and laid eggs. When the maggots hatched, they ate the entire body and possibly the bones. There were piles of dead maggots in the coffin, indicating they thrived quite well until they consumed their food supply, i.e. the corpse.

Needless to say, the head of virtually every buried remains will at some point separate from the body. Once the soft tissues disappear through deterioration, the bones simply fall apart.

So when you look at well kept cemeteries with meticulously cut fresh grass, remember the customers interred below are not doing so well.

Surgical procedures

Cable TV has science channels that show real operations occurring in the hospital setting.

Doctors narrate how challenging it is to do these surgeries without killing the patient. I view these programs with amazement from the standpoint that patients undergoing invasive surgery often look like they may be on death’s door, but then a week later they are shown playing basketball with their grandchild.

One procedure I recall was a patient being operated on to remove the parathyroid glands in the neck. A disease called primary hyperparathyroidism causes the excess secretion of parathyroid hormone that damages the body. The cure is meticulous surgery to identify and remove all of the parathyroid glands. If one is missed, the patient may have to undergo another grueling surgery. One woman had the bottom of her neck cut and the neck skin pulled over her face for what appeared to be hours of meticulous dissection of her neck tissues to remove all the parathyroid glands. To me, the women looked virtually dead, but she made a rapid recovery as seen on TV.

Cryo-preservation—Less gruesome and not abusive

One may remember movies of a perfectly sculpted Sylvester Stallone (and other actors) elegantly traveling through time in a frozen state and being revived in perfect condition.

Real world human cryo-preservation involves a complex surgical procedure followed by a long term of suspension in a stainless steel storage unit at a temperature where virtually no molecular motion exists.  Nothing alluring about it, and when viewed out of context, may appear “gruesome”.

Most people are in denial about what will happen to their bodies when they die. They over react when they hear of someone’s head being surgically and chemically treated to protect brain cell injury during cryo-preservation. Overlooked is that any other form of disposition results in far more ghastly results for the victim of death.

Words like “gruesome” and “ghastly” are being used to describe the cryo-preservation of baseball legend Ted Williams. As stated in the beginning of this essay, what happens to a human body after death is undeniably horrific. Cryonics is merely less gruesome than anything else that is done to a corpse.

I hope this essay helps put cryo-preservation in perspective with more mutilating and appalling forms of disposition that deceased humans are exposed to every day. It should serve to educate the media that ALCOR patients are not being mutilated or “abused” by the complex protocols that are used to provide them with the best scientific opportunity of future revival, whatever the probability may be.