Biostasis 2020

The Biostasis conference series, hosted by the European Biostasis Foundation (EBF), a Basel-based non-profit foundation, is focused on biostasis, cryobiology and cryopreservation.

The conference brings the leading scientists, providers, startups and foundations together. Usually the conference is hosted in Zurich, Switzerland but in 2020 we will host it online.. It will cover relevant topics from A to Z, from basic and applied research to marketing, ethics, service providers, and new approaches.

Among others, speakers will be: Grey Fahy, Aschwin de Wolf, Robert McIntyre, Max More, Joao Pedro de Magalhaes, Adam Higgins, … and many more

Due to a larger contribution, 250 tickets to Biostasis2020  are available for free.

Get one while the free tickets last https://biostasis2020.eventbrite.com/

Cryopreservation With Dignity

It is evident that controlling your time of death can greatly improve the conditions and outcomes of a cryonics procedure. The biggest advantage is that it categorically eliminates the possibility of an unattended death which can produce extensive periods of ischemia, the risk of a destructive autopsy, culminating in a “straight freeze” (cryopreservation without cryoprotection). At the very least, it mostly eliminates the prolonged adverse dying phase often associated with terminally ill patients.

These reasons, and a commitment to self-determination, cause many cryonics advocates to support the “right to die” and (state) legislation to make this option legally available to terminally ill persons. A small subset of cryonics advocates, however, have felt uncomfortable with the support for a sociopolitical movement aimed at securing the “right to die” because they understand that the majority of people seeking this right suffer from medical conditions that can be treated by more advanced medical procedures in the future and would be better served by a life-saving procedure such as cryopreservation instead.

Not withstanding these finer ethical points, utilizing medical aid in dying to secure a more timely and well-managed cryopreservation is a sensible pragmatic choice for terminally ill people with cryonics arrangements. But it should be emphasized that in such scenarios the aim is not to terminate life but to induce metabolic arrest for more advanced medical treatment in the future. This stands in stark contrast to the reasons why most people currently take advantage of such laws. As an evidence-based life-saving procedure, cryonics would benefit from distinct legal protections that provide people the option to choose cryonics as an elective medical procedure

We need a different ethical and legal framework to prevent that cryonics continues to be practiced as a chaotic form of emergency medicine. Philosophers Francesca Minerva & Anders Sandberg have made the case for “cryothanasia” (a term coined in 2015 by Ole Martin Moen) and argue that, as a procedure aimed at saving lives, many of the objections to euthanasia would not apply to cryothanasia.

There is a tendency among some cryonics advocates to overestimate the beneficial effects of controlling the timing of their cryopreservation. Unless choosing the time of your death is followed by rapid standby, stabilization, and field cryoprotection, minimizing distance and transport time to the cryonics facility might still provide a better outcome for most cryonics members.

Cryonics organizations and their members should exercise restraint in political advocacy for right to die laws and focus on creating a favorable legal climate to practice cryonics as an experimental medical procedure instead. There are many people fighting for the right to die, but there are not many people fighting for the right to life extension, which would entail the right to be cryopreserved through professionally-managed hospital-based procedure.

Nightmare of a Cryonicist

A fictional piece by Ben Best

I have tried to live a healthy and safe life in hope that rejuvenation would become available soon. But I made cryonics arrangements in case it did not.

I feared dying in my sleep or in an automobile accident. But I have gotten an aggressive form of cancer that has spread throughout my body, including to my brain, and it cannot be stopped.  My lungs are also cancerous, which means that I am now on a ventilator to keep me breathing and alive.

I have made the decision to terminate my current life before the cancer destroys too much of my brain. I will give a hand signal to have the ventilator removed.

I am in a hospice where a standby team has been assembled. The stabilization equipment is in place, and the team is ready to quickly respond as soon as I give the hand signal. A physician will be on hand to rapidly pronounce death. My power of attorney for health care is here in case I lack the power to give the hand signal.

My friends and relatives are here too. They come and say goodbye with hugs and kisses. Letting go of life is not easy. Some of my friends and family are begging me to cling to life for as long as I can. But if I do so, I will slowly disappear as the cancer destroys my brain. Possibly a miracle cure will be discovered within a few months, but that is very unlikely.

If I give the hand signal to remove the ventilator, will it be like holding a gun to my head and pulling the trigger?

How much time would it be before revival? 25 years? 50 years? 100 years? Longer? Never?

What could happen in that time?

Destruction of my liquid nitrogen container by a terrorist?

A nuclear war?

An asteroid hitting the planet?

A worldwide pandemic that destroys cryonics?

Mismanagement, lawsuits, or bitter infighting that destroys cryonics organizations?

Government action due to political pressure that destroys cryonics organizations?

Failure of cryonics technology to revive?

Several more months of life might be the last opportunity to enjoy friends, family, and all the things I love about life. I hate being in this position. My life does not go before my eyes, there is only fear and doubt. I do not want to die. I do not want my life to end.

I give the hand signal.  Consciousness stops. 

“Suspended Animation” in the Popular Press

Reports in the popular press that “humans have been placed in suspended animation for the first time” have been widely circulated by advocates of cryonics. The UK tabloid Daily Star even talks of a “space travel barrier removed as docs freeze and revive human for first time.”

The actual procedure does not involve freezing (or subzero preservation) and the use of induced hypothermia for medical treatment is much older than these stories indicate. A noted scientist in the field of low temperature medicine comments:

“The news story is announcing human clinical trials of an idea called Emergency Preservation and Resuscitation (EPR) that’s been in preclinical development for more than 20 years.
https://en.wikipedia.org/wiki/Emergency_Preservation_and_Resuscitation

The purpose is to buy time to surgically fix people who’ve “bled to death” (bled out to cardiac arrest), reperfuse them with warm blood, and then restart their heart.  Without cooling and repair of the cause of the fatal bleed before attempting the restart the heart, it’s usually impossible to resuscitate people who show up in emergency rooms in cardiac arrest from blood loss.  

Cooling and reviving people from long periods of stopped blood circulation (“suspended animation”) is not new in medicine.  Some surgical patients are intentionally placed in circulatory arrest for periods as long as one hour at temperatures as cold as +18 degC for certain surgeries in a procedure called Deep Hypothermic Circulatory Arrest (DHCA).
https://en.wikipedia.org/wiki/Deep_hypothermic_circulatory_arrest

The coldest body temperature ever used in medicine dates back to 1955 when Suad Niazi at the University of Minnesota cooled a woman to only +9 degC in cadiac arrest for 45 minutes in an attempt to treat her cancer.  She successfully recovered (but was not cured of cancer).  Niazi even did it without cardiopulmonary bypass or blood substitutes.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1450560/pdf/annsurg01232-0140.pdf

In the early days of DHCA, surgeons such as Christian Baarnard also used temperatures as low as +10 degC.  The claim that accidental hypothermia victim Anna Bagenholm set a low temperature survival record by recovering from a temperature of +14 degC is inaccurate, although perhaps perpetuated because her case was so dramatic and uncontrolled compared to planned medical procedures.  At the time of writing, the lowest body temperature survived by a human in the medical literature appears to be Niazi’s 1955 cancer patient at +9 degC.

If the EPR human clinical trials are as successful as preclinical work suggests they could be, it’s possible that patients might be revived after longer periods of stopped blood circulation than previously demonstrated, perhaps as long as two hours.”

For more information on Alcor’s pioneering low temperature blood substitution experiments, follow this link:
https://alcor.org/Library/html/tbw.html

Additional reading on the sloppy use of the phrase “suspended animation” here:
https://www.biostasis.com/the-purple-prose-of-suspended-animation/

1st Alcor New York Science Symposium

Cryonics returns to its New York roots on November 23 when Alcor New York organizes its first Alcor New York Symposium. Attend the most ambitious cryonics event in NYC in decades and learn about brain cryopreservation, molecular repair, and rejuvenation biotechnologies.

This symposium will feature 3 presentations by staff of Advanced Neural Biosciences about its neural cryobiology, revival, and deep learning research.

There are only a few tickets left. Register using the link below:

https://1stalcornewyorksymposium.splashthat.com/

Speakers announced so far:

Dr. Pedro Magalhaes – Will We Cure Aging in My Lifetime?

People have always sought eternal life and everlasting youth. Recent technological breakthroughs, and our growing understanding of ageing, have given strength to the idea that a cure for human ageing can eventually be developed. Hundreds of genes are now known to regulate ageing in model organisms and can increase longevity by up to 10 fold and retard the process of ageing as a whole in animals. In addition, a large number of potential longevity-extending drugs already exist. Studies of species with exceptional longevity or disease resistance, like naked mole rats that are resistant to cancer or bowhead whales that live over 200 years, may also help treat and prevent human diseases. Here, I will discuss recent advances in longevity science and human applications on the horizon. The scientific prospects of eradicating human ageing within the foreseeable future will also be discussed.

Dr. Regina R. Monaco – Low-Dose Pharmacological Interventions to Facilitate Healthy Aging – Reduction of Cancer Risk

As we grow in our understanding of aging as a series of biochemical pathways and systems undergoing programmed entropic degradations, which may be reversed, re-entrained, stabilized, minimized, maximized, turned off or on, or otherwise healthfully intervened in, we gain more and more tools to assist this process to maintain a healthful equilibrium. One important intervention to extend healthy life span is to use pharmaceuticals or neutraceuticals to reduce your probability of having cancer.

In this talk I present and discuss several low dose pharmacological interventions which have been shown to have strong ant-cancer properties, we well as some other benefits such as reduction of chronic inflammation. I will review the mechanisims and anti-cancer benefits of low-dose therapy of the pharmaceuticals metformin, naltrexone, aspirin, and for women, tamoxifen (breast cancer). I will also discuss benefits of targeting and inducing apoptosis (killing) to remove a percentage of senescent cells using rapamycin, and neutraceuticals fisetin, and quercitin, with or without dasatinab.

Ben Best – NAD+ Restoration and Senolytic Therapy

Ben Best has subjected himself to two age reversal therapies: (1) senolytic therapy (therapy to eliminate senescent cells using dasatinib and quercetin) and (2) NAD+ infusions (to restore NAD+ to youthful levels). He has also attended several conferences dealing with these subjects as well as studied and written about them, the results of which he will provide in his presentation.

Chana Phaedra – An Introduction to Brain Preservation Optimization

Vitrification has the advantage that it does not need different cryoprotectant protocols for different cell- and tissue types. Vitrification of the brain does presents two distinct challenges: low tolerance to ischemia and poor blood-brain barrier permeability of cryoprotectants. In this presentation I will review the history of brain cryopreservation, the status of brain cryopreservation research, and future directions.

Aschwin de Wolf – Revival of “Straight Frozen” Patients

Freezing of the brain without cryoprotectant (a “straight freeze”) is considered the worst cryopreservation scenario but there is a paucity of ultrastructural evidence how the straight frozen brain actually looks like. Aschwin de Wolf will review electron micrographs of the straight frozen brain (under a variety of conditions) and will discuss how “medical cryobots” will prepare the brain for molecular repair and infer the original non-frozen state from the damaged state.

Michael Benjamin – Alcor Meta-Analysis

Several attempts have been made to create quantitative case outcome methodologies in cryonics. Advanced Neural Biosciences has embarked on a comprehensive meta-analysis of all Alcor patient cases, an endeavor whose goal is to develop, experimentally validate, and refine a quantitative cryopreservation evaluation methodology. Michael will be presenting some preliminary statistics gathered during Phase 1 of the study so far.

Dr. Ralf Spindler – Functional evaluation of brain preservation protocols

Currently, reversible vitrification of whole brains is limited by neurotoxicity of the very concentrated vitrification solutions involved. Here, an automated assay is described which has proven to quantify synaptic connections in live-cell neuronal networks by a high-content confocal imaging method. Since it is known that synaptodentritic damage, especially the decrease in number of synaptic connections, correlates with cognitive decline the assay could be used to evaluate brain preservation protocols.

Dr. Roman Bauer – Computational Biology Methods for Tissue Cryopreservation

In contrast to most other biomedical fields, tissue cryopreservation has remained relatively untouched by computational techniques. State-of-the-art cryopreservation still predominantly relies on trial-and-error and large numbers of experiments for the determination of protocol parameters. Roman Bauer will review milestones in computational and mathematical work towards better cryopreservation protocols, and will discuss how he sees future automated cryopreservation technologies maximize post-thaw tissue quality.

Dr. Emil Kendziorra – Professionalization and Scaling of Medical Biostasis

With only a few thousand members world-wide, medical biostasis has stayed a very small field, albeit being around for decades. In Europe the topic has been even more niche. The EBF (European Biostasis Foundation) based in Switzerland, has recently set out to fundamentally change this situation with four main areas of activity – sign up / stand-by, storage, research and long-term asset management. Emil Kendziorra will present the core activities to professionalize medical biostasis and scale the field.

Dr. Robin Hanson – Hidden Motives Help Explain Why Cryonics Isn’t Popular

The usual pro-cryonics argument frames it as medicine, to be evaluated in terms of its technical ability to prolong life. However, though they are unaware of it, for most people medicine is more about showing that they care than about prolonging life. Robin Hanson reviews the evidence that many big areas of life are driven by hidden motives quite different from what people usually say, and then tries to apply this insight to help us understand why so few people actually choose cryonics.

The Circle of Willes in Cryonics Perfusion

Blood flows into the brain primarily via the carotid arteries and the vertebral arteries. The Circle of Willis is a circular arterial structure in the brain that connects blood flowing in from the carotid arteries with blood flowing in from the basilar artery (which is fed by the vertebral arteries).
Blood flows from the Circle of Willis into brain tissue via the anterior, middle, and posterior cerebral arteries. Many studies have shown that the Circle of Willis is incomplete in most people. A 1998 study of 150 healthy adult volunteers showed a complete Circle of Willis in only 42% of cases — more often complete in younger persons and females [RADIOLOGY; Krabbe-Hartkamp,MJ; 207(1):103-111 (1998)]. A slightly more encouraging 2002 study of 118 healthy volunteers in the 65-68 age group, showed 47% had a complete Circle of Willis [THE JOURNAL OF CARDIOVASCULAR SURGERY; Macchi,C; 43(6):887-890 (2002)]

For cryonics purposes, it has been believed that perfusion into the carotid arteries, but not into the vertebral arteries will result in incomplete perfusion of the brain if the Circle of Willis is not complete. In particular, if both posterior communicating arteries are missing, then perfusing only through the carotid arteries will result in no blood getting to parts of the brain supplied by the posterior cerebral arteries. Both posterior communicating arteries were missing in 11% of those in the 1998 study and in 14% of those in the 2002 study cited above.

Nonetheless, a 2008 study showing Circle of Willis complete in only 40% of 99 patients found no case of insufficient perfusion in functional tests of patients given unilateral cerebral perfusion. The authors concluded that “extracranial collateral circulation” provides an alternative pathway to the Circle of Willis for cerebral crossperfusion [EUROPEAN JOURNAL OF CARDIOTHORACIC SURGERY; Urbanski,PP; 33(3):402-408 (2008)]. Although persons with missing posterior communicating arteries could easily have pathways to opposite sides of the brain, other variants of Circle of Willis incompleteness would be expected to prevent perfusion across hemispheres.

When the cryonics organization Alcor does a cephalic isolation (“neuro”) perfusion, the carotid arteries are initially cannulated and the vertebrals are not cannulated. Only if when the patient is being perfused into the carotid arteries no flow is seen coming from the vertebral arteries are the
vertebral arteries to be cannulated and the patient is to be perfused through both the carotids and the vertebrals. If, on the other hand, flow is seen coming from one of the vertebral arteries after perfusion of the carotids has begun, it is assumed that the Circle of Willis is complete and the vertebral arteries are clamped for the rest of the perfusion. Flow only needs to be seen in one of the vertebrals to confirm that the Circle of Willis is complete, because the vertebrals unite in the basilar artery before connecting to the Circle of Willis.

One Alcor employee has informed me that of 15-20 neuro patients perfused by this cephalic isolation method, not once has there been an absence of flow from the vertebrals and not once has Alcor perfused a cephalic isolation patient through the vertebral arteries. This would be slightly improbable, based on a 10-15% expected rate of incomplete communicating posterior arteries on both sides. But another Alcor employee remembers one or two cases where vertebral artery perfusion was done (which would match expectations).

When both posterior communicating arteries are not missing, there is another potential problem with perfusing only into the carotids and not the vertebrals — namely, loss of perfusion pressure. Perfusate entering the Circle of Willis could exit through the basilar artery (the vertebrals) instead
of through the cerebral arteries. Vascular resistance in the body is reportedly only one quarter what it is in the brain. Clamping the vertebral arteries (as is done during Alcor neuro perfusions) could prevent this problem. Blood flowing into the basilar artery need not be pushing all of the blood in the body, however, because arteries — and especially veins — have a large reserve capacity (a balloon-like ability to expand).

Possibly the reserve capacity of the brain would allow blood to flow into the brain as readily as into the body. Blood has about three times the viscosity of water, and vitrification solution has about twice the viscosity of blood. Viscosity will increase vascular resistance in all blood vessels, but the effect would be greater in the brain. The “no reflow” phenomenon would also create resistance in the blood vessels, which again might be greater in the brain than in the body.

Prior to the use of vitrification solution, the Cryonics Institute only perfused cryonics patients through the carotid arteries — there was no attempt to perfuse into the vertebral arteries. Nonetheless, dehydration was seen in the patients, and adequate effluent flow was seen from the jugular veins. Perfusion pressures were reportedly not excessive.

Currently, CI’s funeral director has been opening the chest (median sternotomy), and attempting to clamp the subclavian arteries, as well as the descending aorta, to perfuse into the ascending aorta. In several cases the ascending aorta has been perforated, forcing higher cannulations or the subclavians have been difficult to cannulate after having opened the chest. Our funeral director refused to open the chest at all for a known case of Methacillin- Resistant Staphylococcus Aureas (MRSA).

It would be preferable if a case could be made for perfusing all CI patients only through the carotids. Carotid-only has been recommended for vitrification perfusions overseas, as well as for glycerol perfusions in post-mortem sign-ups. Whether vitrification solution perfusion into the carotids can achieve adequate perfusion pressure in the brain — and whether adequate perfusion pressure can be verified by the observation of effluent from the jugular veins remains unresolved.

It should not be too difficult to clamp the vertebral arteries by cutting near the clavicle, as CI’s funeral director did when CI began the attempt to perfuse the vertebrals as well as the carotid arteries. Nonetheless, this would result in failure to perfuse portions of the brain supplied by the posterior cerebral arteries in the 10-15% of patients who are missing both posterior communicating arteries.

First published in The Immortalist, February, 2011

Biostasis.com

Biostasis.com is the world’s largest independent website about cryonics and medical human biostasis.

In 2007 Aschwin de Wolf launched the cryonics blog Depressed Metabolism, the first professional blog to exclusively cover the science and practice of cryonics. Out of this platform emerged The Institute for Evidence-Based Cryonics (2008-2018), a non-profit aimed at educating the general public about cryonics. The Institute organized a number of groundbreaking symposiums on cryonics and dementia and cryonics revival scenarios. The Evidence-Based Cryonics Institute website also became the official host of the Scientist’s Open Letter on Cryonics and engaged in several campaigns to draw attention to recent breakthroughs in brain cryopreservation.

Biostasis continues the journey that started with Depressed Metabolism and the Institute for Evidence-Based Cryonics. Its goal remains to educate the general public about cryonics and human biostasis in all its aspects. We will keep publishing new content and historical documents relating to cryonics and remain the official host of the Scientist’s Open Letter on Cryonics. This year we will also announce the publication of the first detailed medical human biostasis protocol that will allow hospitals to educate themselves about offering cryonics as an elective medical procedure. In 2019 we will also announce a series of initiatives to study the theoretical aspects of conducting cell repairs at low-temperatures, or medical cryobotics.

All entries from the depressed metabolism and evidence-based cryonics website remain available on the biostasis website. Please update your links and spread the word about biostasis.com.

Good Cryonics is Local

The enemies of a good cryonics case are time and temperature. Deployment of a standby team that can start rapid cooling upon circulatory arrest should take care of the temperature challenge. The time element is more challenging. Even if a patient is stabilized rapidly after pronouncement of legal death, logistical and legal challenges can interfere with timely transport to Alcor for subsequent procedures. For example, if a patient is rapidly cooled down in North Dakota but logistical challenges and flight schedules prevent arrival of the patient at Alcor until several days later, the patient will still be subjected to progressive deterioration of the fine structure of the brain, breakdown of the blood brain barrier, swelling, and a number of processes that prevent smooth cryoprotection of the brain, or even necessitate a “straight freeze” (cryopreservation without a cryoprotectant). How should Alcor deal with the challenge of having only one physical location in Arizona but being responsible for members all over the world?

The most obvious solution is for a terminal member to move to Alcor. In almost all cases this is the preferred solution because this prevents several potential logistical, legal, and technical challenges. The advantages of moving to Alcor are so great for both the cryonics organization and the patient that Alcor offers up to $10,000 in relocation assistance. To further incentivize such a choice, Alcor could consider further increasing the amount of relocation assistance and/or actively assist older and sick members to consider relocating.

Another solution is to bring all major Alcor procedures to the location of the patient. This is easier said than done. Whereas a patient relocation does not require major expenditures and logistical decisions on the part of Alcor, bringing cryoprotection to the patient is a non-trivial task because it entails performing Alcor’s operating room procedures at a remote location. In practice, this can be done, and Alcor has cautiously authorized “field cryoprotection” for overseas and selected US cases. In principle field cryoprotection is possible for both neuro-patients and whole body patients but true whole body field cryoprotection would require the creation of an adequately equipped vehicle or satellite facility, not to speak of medical expertise. Recognition of the fact that many Alcor members do not relocate when terminally ill, and potential cost savings, have prompted some Alcor officials to advocate expanding field cryoprotection to more members.

Since it is obviously easier to bring a patient to a hospital than a hospital to a patient, more effort will need to be spent in educating members of the advantages of timely relocation to the Scottsdale area.

There might be one route to bringing the hospital to the patient and that is to encourage the creation of several of “cryonics hubs” in areas with large numbers of Alcor members. Support and recognition from Alcor for such initiatives is necessary but a decentralized approach could be effective here. Local members can start with creating a cryonics infrastructure to assist professional standby teams. Such efforts can include maintaining a list of pertinent local regulations, cooperating funeral homes, local volunteers and medical professionals, and flight schedules. A more ambitious step would be to equip certain areas with a local rescue vehicle, as was done in the past in Southern California. A more ambitious step would be to equip such a vehicle for field cryoprotection or even set up such facilities in a cooperating funeral home or building. This is a formidable task that would require many hours of work and considerable expenses but it would produce a more robust response infrastructure for Alcor to utilize. It could also make some areas less vulnerable to episodes of deteriorating response capabilities at Alcor. Last but not least, bringing people together to engage in such a project will also tighten the social fabric and local visibility of cryonics.

Originally published as a column in Cryonics magazine, November – December, 2018

Hybrid Standby Infrastructure

Cryonics has limited appeal but cryonics organizations have assumed global responsibility to cryopreserve their members timely and competently. A hybrid model in which local members and volunteers work together with medical staff members and contractors to deliver the best possible cryonics care is the best answer to this situation. Taking Alcor as an example, what does this model entail in terms of infrastructure and staffing?

The most important response mandate of a cryonics organization is to ensure competent local response capabilities through full-time employment of medical professionals and cryonics experts at the facility. Unlike remote response capabilities, Alcor’s response to local cases should not be dependent on erratic, case-by-case, contracting with local medical professionals. While such professionals can supplement Alcor’s own capabilities, Alcor should never find itself in a situation where it cannot deploy an effective standby due to a shortage of available staff members. This mandate requires that Alcor’s staffing policy cannot be allowed to outcrowd its local response capabilities. In practice, this means having at least three staff members available for local case work with at least two of them being proficient (and preferably certified) in conducting medical procedures that are elemental to cryonics stabilization (placing IV lines, placing an endotracheal tube etc.).

A strong mandate to primarily deliver state-of-the-art care in the Scottsdale area may look rather meager in light of its global responsibilities, but considering the fact most Alcor members do not die suddenly, and are eligible for an attractive Alcor relocation-reimbursement, out-of-state cases may increasingly be seen as reflecting choices made by Alcor members, as opposed to inevitable events happening to them. The significantly higher costs, and potential logistical and legal complications, of out-of-state cases are a strong argument to further increase Alcor’s relocation reimbursement amount.

The next layer is to coordinate a network of professional cryonics response providers (such as Suspended Animation and ICE) and local groups to respond effectively to out-of-state cases. Such companies can provide a valuable element to deliver rapid response provided that access to such services does not lead to allowing the atrophy of local groups and response capabilities. Professional standby companies usually deploy out of a single state (or two at most), which means that relying on local capabilities created by members remains an essential component for responding timely to time-sensitive cases. To ensure consistent and competent non-local response coverage, the coordination and monitoring of non-local response capabilities should be an important job responsibility of a full-time Alcor staff member.

To augment the services of cryonics standby organizations and the resources available to local members, regions with substantial numbers of Alcor members should be encouraged and supported in creating robust physical cryonics responsibilities. In such areas, maintenance of a full set of standby kits, a response vehicle, and even on-site field cryoprotection capabilities should be pursued. These non-Scottsdale cryonics “hubs” should be allowed some degree of autonomy, provided their efforts conform with Alcor’s protocols and standards. Further enhancement of these cryonics hubs can be reaped if such efforts are supported by other cryonics-supporting activities such as research and public outreach. Examples of areas where such hubs would be feasible and desirable include New York City, Los Angeles, and San Francisco. The mandate for these areas should be to close the gap between Scottsdale-based cases and local cases.

International cases are a formidable challenge for Alcor and the cryonics hub idea will need to be extended to countries (or even a set of neighboring countries). Collaboration between members of different cryonics organizations is often a necessity in international cases. Transport times to the US necessitate the use of procedures such as field cryoprotection and shipping on dry ice

Originally published as a column in Cryonics magazine, September – October, 2018

Why Don’t You Start With Standby First?

In the 15 years I have been involved in cryonics I have observed a predictable pattern. An enthusiastic group of people want to create a new cryonics organization. Reasons can range from wanting to have a cryonics organization in their own continent or country (Europe, Australia) to having a distinctly different vision how cryonics should be practiced. Some of these attempts have succeeded and others have failed. The common denominator I have seen in the failed attempts is to do “something else” first before offering long-term maintenance. If this “something else” would simply comprise exercising due diligence in having a sensible financial and legal framework in place before accepting patients that is understandable. But here “something else” concerns achieving something even harder as a precondition for building a storage facility: creating state-of-the-art response capabilities.

One argument for this approach is that without adequate standby and stabilization having a cryonics storage facility is pointless. I do not think this is true and if this argument is followed to its logical conclusion there will never be a good moment to start offering storage as long as cryonics is as unpopular as it is right now. Sure, it is indisputable that a cryonics patient who receives a prompt response and good stabilization procedures will sustain less damage and better cryoprotection. This does not mean, however, that anything that falls short of this is doomed. The ultrastructure of the post-mortem brain is more robust than even most cryonicists assume and ice formation does not necessarily render the original structure of the brain un-inferable.

The other argument is often a variant on the idea that the most challenging element of a cryonics endeavour (i.e. storage) should be done last. But the hardest part of cryonics is not storage but standby. Creating cost-effective, dependable, responsible capabilities for a region larger than a city or small country is a non-trivial challenge. Let’s consider Europe for example. Providing standby coverage for all countries would require a massive initial investment with numerous medical professionals on retainers being available for a case at the right time at the right place…a case which may not happen for many years. Will such an organization be able to keep its supporters motivated and financially committed? In reality this mandate often creates a situation where the organization cannot live up to its standby claims, storage is (indefinitely) postponed, and interest wanes until the next attempt is made to do the same thing. It is no surprise, in my opinion, that some of the newer cryonics organizations (KrioRus, Oregon Cryonics) accepted patients for long term care from the get-go.

Standby is important and I do not pretend that it will take care of itself when there is storage. But whereas storage needs to be centralized (having a storage facility in each of the European countries at this point would be ludicrous) having sound and dependable standby capabilities is a decentralized process which can be pursued by different groups in different states or countries based on their different needs and (financial resources). As we speak, the UK and the Netherlands have made impressive efforts to create such capabilities and these efforts will further grow and spread when there is a facility with patients to care for. One needs to start somewhere and the most realistic path is to first create a sensible storage solution followed by de-centralized efforts to transport patients to the facility in the best possible condition.

Originally published as a column in Cryonics magazine, July – August, 2018