
Structure-function analysis of neuroprotectants

 
In  “The  chemistry  of  neuroprotection”,  the  author  argues  convincingly  that  there 
could  be  great  benefit  from  a  systematic  and  rigorously  scientific  study  of  the 
physical chemistry of putative neuroprotectants vis-à-vis their pharmacological effect. 
However,  the  first  example  used  of  the  earliest  thinking  in  this  direction  (which 
comes, not surprisingly via V. A. Negovskii, the father of resuscitation1 medicine) is 
instructive as to some of the potential barriers standing in the way of this approach.

“It is not surprising that all the agents which are effective in shock carry a negative 
charge.  This  applies  both  to  heparin,  which  possesses  a  very  strong  negative  
charge,  and  to  hypertonic  glucose  solution.  The  same  may  be  said  about  a  
substance  now  in  wide  use  -  dextran  -  which  has  small,  negatively  charged  
molecules, and also about the glucocorticoids 21, 17, and 11, which also have a  
negative  charge."  -  Professor  Laborit  in:  Acute  problems  in  resuscitation  and 
hypothermia; proceedings of a symposium on the application of deep hypothermia in  
terminal  states,  September  15-19,  1964.  Edited  by  V.  A.  Negovskii.

 In  the  intervening  decades  since  Laborit  wrote  the  words  quoted  above, 
supraphysiologic  (high)  steroids  have  not  only  failed  to  demonstrate  benefit  in 
cerebral resuscitation and shock, they have been found to be actively harmful in 
every well designed RCT undertaken to test their utility (a). This also extends to their 
lack of utility in trauma, spinal cord injury and sepsis. Similarly, the utility of heparin 
in  treating  the  encephalopathy  of  the  post-resuscitation  syndrome, or  improving 
survival  after  cardiac  arrest  has  recently  been  called  into  question.  Glucose, 
hypertonic  or  otherwise,  was  long  ago  demonstrated  to  markedly  increase 
neurological injury if given immediately after reperfusion following cardiac arrest, and 
elevated blood levels of glucose, both pre- and post cardiac arrest have a strong 
negative  correlation  with  both  survival  and  neurological  outcome.

 Determining the seriously harmful effects of steroid administration in critical illness 
took  decades.  Despite  the  compelling  evidence  for  their  injurious  effects, 
administration of  large,  supraphysiologic  doses of  steroids is still  a practice both 
used and defended by some clinicians (albeit not ones who rely on evidence based 
criteria) and the use of glucose in shock, trauma and cardiac arrest took a nearly 
comparable period of time to discredit. These two examples are noteworthy because 
they comprised mainstays of therapy for most kinds of neuroinjury for decades, and 
they had compelling theoretical appeal, as well as many positive small clinical and 
animal research studies. Indeed, the debate continues to this day with controversy 
centred mostly on the use of low or “physiological replacement” doses of steroids in 
1 Resuscitation medicine is properly termed reanimatology, and is so-called in the non-English 
speaking world
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critical illness. As the eminent pulmonologist and intensivist Neil Macintyre observed 
in 2005, “Patients die, but steroids never do.”  This raises the twin problems of bad 
research  (i.e.,  junk  science)  and  statistically  under  powered  or  otherwise  flawed 
studies. Combined, it has been estimated that these two types of defective studies 
comprise the bulk of published peer-reviewed scientific work.

High  dose  corticosteroid  therapy  for  neuroinjury  offers  another  complication  in 
determining  the  therapeutic  efficacy  of  any  drug  that  merits  consideration  as  a 
neuroprotectant (new or old). While there is no doubt that high-dose corticosteroids 
are ineffective and deleterious in the clinical setting, there is also little doubt that 
these agents  are neuroprotective in the laboratory setting under certain conditions 
and  for  discrete  subpopulations  of  neurons.  The  reasons  for  the  failure  of 
translational  research  in  the  case of  corticosteroids  are  complex,  but  are mostly 
attributable to crucial differences between the laboratory and the real world of clinical 
medicine. In the case of corticosteroids these differences are most significantly:

a. Delay from time of insult  to time of  treatment;  in the laboratory the 
timing of interventions is uniform and is typically much shorter than is 
the case in the clinic where delays in both presentation and treatment 
are both long and highly variable.

b. Heterogeneity of injury in humans compared to animals; animal models 
of  neuroinjury  are  highly  standardized  (location,  extent,  mechanics) 
whereas human patients present with diverse injuries inflicted in many 
complex and often poorly understood ways.

c. Species  differences;  not  only  are  there  large  genetic  differences 
between  humans  and  rodents  in  general,  there  are  dramatic 
differences in the native ability of rodents to both resist and overcome 
infection in comparison to humans. 

d. Demographics and comorbidities: laboratory animals are comparatively 
very uniform genetically,  are typically  young and healthy and of the 
same age,  do  not  have  comorbid  conditions  such  as  hypertension, 
diabetes,  atherosclerosis,  obesity  or  the  diminished  physiological 
capacity and repair and regenerative capacity increasingly present in 
humans over the age of 25.

e. Rodents aren’t people and do not interact with investigators in ways 
that facilitate straightforward determination of an adverse affect such 
loss  of  short  term  memory,  or  other  cognitive  deficits.  It  is  now 
understood  that  the  corticosteroids  are  toxic  to  the  neurons  of  the 
hippocampus  in  both  rodents  and  men.  However,  injury  from  this 
adverse effect is not only more evident in men than in mice (or rats for 
that matter), it is only men who are capable of complaining about it.

It  is  notable  that  all  of  these  effects,  with  the  possible  exception  of  increased 
resistance to steroid-induced immunosuppression-mediated infection, obtain in the 
case  of  other  translational  models  of  drug  development.  The  conclusion  that 
corticosteroids  are  very  likely  neuroprotective  in  humans  (in  terms  of  the  direct 
pharmacological  effect  on  selected  subpopulations  of  neurons  in  injured  central 
nervous tissues under ideal conditions) is highly likely.  However,  the confounding 



realities of  the  clinic  and the genetic  differences between  men and rodents  (the 
animals almost exclusively used in this type of research) mask this effect. This poses 
yet another serious challenge to investigators seeking to establish common moieties 
in prospective neuroprotective molecules.

Clinical  trials  of  putative  neuroprotective  substances  have  been  overwhelmingly 
negative. This has been the outcome despite often stellar results achieved in animal 
models; often in diverse species in studies conducted by multiple investigators in 
different institutions and sometimes in different countries; none of whom have any 
obvious relationship, let alone one that might raise the specter of conflict of interest. 
In  the  last  6  years  alone,  over  1000  experimental  papers  and  over  400  clinical 
articles  have  appeared  on  this  subject.  What  this  suggests  is  that  the  same 
deficiencies seen in studies reported upon in rest of the peer-reviewed biomedical 
literature also apply to studies of pharmacological intervention in neuroprotection. An 
inevitable conclusion is that until the signal to noise ratio improves, attempts to draw 
general  conclusions  about   the  shared,  essential  properties  of  neuroprotective 
molecules  will  be  difficult  at  best,  and  unreliable  or  misleading  at  worst.

Perhaps a good place to start this kind of analysis is in an area where the molecular 
structure of the agent(s) is extraordinarily simple and the animal and clinical data are 
both robust and show good to fair agreement. Hypertonic sodium chloride solutions 
have demonstrated  efficacy in  providing  both systemic  (splanchnic)  and cerebral 
protection in a broad class insults including hemorrhagic/hypovolemic shock, closed 
head injury and less robustly in stroke and global cerebral ischemia. Interestingly, 
other cation salts of chloride given at comparably high tonicity do not have this effect. 
Furthermore,  animal  as  well  as  small  human clinical  studies  have  demonstrated 
isochloremic hypertonic solutions to be as effective as hypertonic sodium chloride at 
restoring  microcirculatory  flow  and  reversing  metabolic  acidosis  in  haemorrhagic 
shock without  the  potentially  troublesome side-effect  of  raising the mean arterial 
pressure  to  levels  where  re-bleeding  may  occur  in  trauma  or  subarachnoid 
haemorrhage.   A relative lack of  effectiveness of  the chloride salt  of  magnesium 
compared to  the sulfate  salt  of  this  ion has also been noted.  Understanding the 
mechanics of these paradoxes would seem to be a worthwhile and comparatively 
straightforward place to begin such structure-activity relationship analyses.

17β-Estradiol



Cerebroprotective drugs not infrequently possess a multiplicity of pharmacological 
effects that are known to be neuroprotective but that may be accomplished by very 
different and even indirect means in terms of their structure-function relationship. 
Some cerebroprotective molecules, such as the female hormone 17β-estradiol  and 
the  mixed  estrogen  antagonist-agonist  tamoxifen  share  common  physiochemical 
properties such as free radical scavenging, N-methyl-d-aspartate (NMDA) receptor 
inhibition, and modulation of volume regulated anion channels (VRAC); which play a 
role in ischemia-induced release of excitatory amino acids. There is considerable 
evidence  that  some  of  17β-estradiol’s  neuroprotective  effect  is  via  signal 
transduction  as  well  as  its  neurotrophic  effects,  even  at  doses  below  those 
necessary for its direct effects on reactive oxygen species production and its NMDA 
receptor  inhibiting  effects.  While  the  structure  of  the  molecules  shares  some 
important  features,  they  are  also  structurally  very  different  and  the  signal 
transduction and neurohormonal  effects  are almost  certainly very different.  Thus, 
these molecules also present a fascinating opportunity to probe structure-function 
relationships in neuropharmacology.

Tamoxifen



Finally,  an admission, or perhaps a confession is order in ending this discussion. 
This  author  has  been  responsible  for  the  application  of  at  least  one  putative 
neuroprotective drug to cryopatients which ultimately proved ineffective in human 
clinical  trials  when  administered  during  and  after  cardiopulmonary  resuscitation 
(CPR). This  drug, nimodipine,  performed well  in  animal  trials,  but  failed to show 
benefit  in  human  trials,  possibly  as  a  result  of  its  hypotension-inducing  effect. 
Adequate mean arterial pressure (MAP) following resuscitation from cardiac arrest is 
essential to survival and a post arrest bout of hypertension has been demonstrated 
to provide substantial cerebral rescue in animal models of global cerebral ischemia. 
Reduction of MAP in cryopatients is a serious concern because achieving adequate 
perfusion pressure is problematic under the best of conditions. It is also worth noting 
that cryopatients have been given a variety of other ineffective neuroprotective drugs 
over  the  past  30  years,  including the  opiate  agonist  naloxone,  the  corticosteroid 
methylprednisolone and the iron chelating drug desferroxamine.

While these drugs, with the possible exception of nimodipine, are not likely to have 
been  injurious  (except  perhaps  to  the  pocketbook),  their  use  raises  important 
questions about when and how promising animal research should be translated to 
the setting of clinical cryonics. Unique among all other populations of human and 
animal patients, cryopatients have the opportunity to be treated with neuroprotective 
drugs that show great promise, absent the long delays  of regulatory vetting,  and 
independent of the economic pressure experienced by pharmaceutical companies to 
not only market drugs that are effective, but to market ones that are also profitable. 
The question thus becomes what criteria do we use in applying these drugs absent 
the extensive pre- and post marketing evaluation that obtains with approved ethical 
drugs? In essence the question we must ask and answer is “can we do better, much 
better in fact, than our colleagues in conventional critical care medicine? 

_________________________________
(a)  The  one  condition  in  which  there  is  unequivocal  benefit  to  supraphysiologic 
administration of steroids is meningococcal meningitis with substantial evidence also 
supporting  a  similar  degree  of  efficacy  in  Typhoid   and  Pneumocystis  carinii 
pneumonia..
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